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Letters

An All-Harmonic Coupling-Band Hybrid

J. S. WIGHT, W. J. CHUDOBIAK, AND V. MAKIOS

Abstracf—A description is given of a microstrip, branch-arm

hybrid which exMbits 3-dB coupling at all harmonics of a fundament-

al frequency as compared to the odd-harmonic coupling exhibited

by conventional branch-arm hybrid structures.

INTRODUCTION

The development of mixer theory has resulted in circuits of in-

creased complexity. Situations arise where local oscillator (LO)

waveshaping is desirable in order to maximize the ratio of the con-

version conductance to the input conductance. To apply wave-

elements of a conventional hybrid branch arm at all harmonics.

Consequently, the even-mode C element of the matrix must equal

the negative of the odd-mode C element at each harmonic. In addi-

tion, the C element of the matrix (either mode) must equal +j or

–j at each harmonic. The values for the four transmission-line

parameters of the branch arm are readily obtained from the preced-

ing four conditions as

Yol = 0.866, @l, = 7r/6

YO, = 0.289, 61, = 7r/3.

The practical dMiculty of obtaining microstrip transmission-line

admittances below 7 mmho restricts the use of the preceding branch-

arm circuit to system transmission-line impedances below 40 w

The net transmission matrix for the main arm is given by
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shaping techniques to a balanced structure, 3-dB phase quadrature

coupling is required at all harmonics of the fundamental. An all-

harmonic coupling-band hybrid can be realized with a suitably

designed parallel-line coupler. Due to geometrical limitations, how-

ever, a tandem pair of 8.34-dB couplers is required to obtain the

necessary tight coupling, resulting in a large multisection structure

[1]. A branch-arm hybrid on the other hand is readily realized in

compact microstrip form. However, its swept frequency coupling

characteristics repeat at each odd harmonic of the fundamental

center frequency with no coupling and high inpukport reflections

occurring at each even harmonic. Consequently, it must be modified

in order to achieve coupling at all harmonics of a fundamental fre-

quency. A compact hybrid structure which performs this function

in microstrip is described in this letter.

THEORETICAL DEVELOPMENT

An all-harmonic coupling-band hybrid may be constructed using

the branch-arm and main-arm structures shown in Fig. 1 (a) and

(b). The even- and odd-mode transmission matrix for the-branch

arm is given by
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The matrix elements in (1) must equal the corresponding matrix
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Fig. 1. (a) Main-arm structure. (b) Branch-arm structure.
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Fig. 2. Branch-arm junction with parasitic equivalent circuit (e, =

2.3, h = 10 roils, f = 8.2 GHz).
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Fig. 3, Swept frequency characteristics. —: experimental; – -: the-

oretical. In all cases, frequency is in gigahertz. (a) Ports 1.-2 insertion

loss. (b) Ports 1-3 insertion loss. (c) Port 1 (input-port) return loss.

(d) Ports 1-4 insertion loss.

The matrix elements in (2) must equal the corresponding matrix Yos = 2.45, B1, = 7r/3

elements of a conventional hybrid main arm at all harmonics, Con-

sequently, the A (or D) element of the matrix must eaual zero at Y,4 = 1.63, @, = 2w/3.

each har-rnonic. In “addi~ion, the C element of the matrix must equal

+j@ or –j@ at each harmonic. From the principle of reciprocity, EXPERIMIINTAL DESIGN AND RESULTS
the B and C elements of the matrix are inversely related and as a

result, additional conditions on the B element are not required. The A microstrip all-harmonic coupling-band hybrid with a funda-
values for the four transmissiou-line parameters of the main arm mental frequency of 4.1 GHz was constructed on a thin plastic
are ready obtained from the preceding four conditions as substrate (h = 10 nnil, c, = 2.3, l. O-roil copper metallization).
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‘I’he hybrid was designed with a 39-Q system and employed near.

optimum transmission-line tapers [2]to50-Q lines.

Parmitic junction reactances have asignificant effect onthe char-

acteristics of the hybrid. Shce an analytical description of the

complex junctions found would be very difficult to obtain, a super-

position of equivalent circuits which have been analytically described

elsewhere was employed. Leighton and Mllnes [3]have shown that

an asymmetrical T junction may be approximated by a symmetrical

T junction for microstrip parasitic calculations provided WI* is

approximately equal to W2*. The current authors have assumed

that junctions of the form shown in Fig. 2 maybe considered as a

superposition of two T junctions, again provided WI* is approxi-

mately equal to W2*. In the hybrid structure constructed in micro-

strip, WZ* is found to be much greater than WI* and a magnetic-

field discontinuity similar to that formed in a step junction [4] must

also be considered. A superposition of these three equivalent circuits

(see Fig.2) has been assumed toapproximate thetotalparasitics

of the junction.

The swept frequency characteristics of the hybrid are shown in

Fig. 3. Equal power levels were obtained at the two output ports

[Fig.3(a) and (b)]atboth 4.1and8.2GHz. Theinput-port return

loss was greater than 22 dB [off the trace shown in Fig, 3(c)],

while theisolated-port insertion loss was greater than 14 dB [Fig.

3(d)] at both frequencies. The dielectric and resistive losses were

approximately dB. These characteristics areadequate for balanced

mixer applications, however, it may be possible to still further im-

prove the performance by employing alternative geometries.
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The Characteristic Impedance of Rectangular Coaxial Line

with Ratio 2:1 of Outer-to-Inner Conductor Side Length

RYUITI TERAKADO

Recently, Rlblet [1], [2] has given the exact dimensions of a

family of rectangular coaxial lines with given impedance by con-

formal mapping. Before then the same problem was treated in [3],

[4]. However, the previous literature does not include the case

when the side of the outer and inner rectangle are in the ratio 2:1

bot~in w~h and in height: if in [1, eq. (11)] we put O= = D=

or EO = Al?, modulus k coincides with modulus h and the rectangu-

lar line becomes a square coaxial section, which is a special case of

Bowman [5].
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It is the purpose of this letter to show a method for obtaining the

characteristic impedance of rectangular coaxial lines with the ratio

2:1, both in width and in height, by the principle of conformal

mapping.

We consider rectangular and circular regions [Fig. 1 (a) and (b)].

We regard the center of each region as a source of lines of electric

force, and regard the whole of the circumference of each region as a

sink. In the circular region any radius coincides then with a line of

electric force. In the rectangular region, however, it is not simple

to draw exactly all of the lines of electric force. The four segments

OE, OF, OG, and OH of Fig. 1 (a) coincide with lines of electrio

force, and it is clear that these lines of electric force correspond to

the same lines of the circular region. Strictly, the transformation ‘

~ _ 1 * cn(Z,7c)

sn(Z,k)

maps the rectangle in the Z plane into the circle in the z plane, where

OH K’ (k)
..—
OG. K(k)

(1)

Cos a = k. (2)

If we cut off a partial region OFCG from both of ,the rectangular and

circular regions along the lines of electric force OF and OG, then

L-shaped region A13FOGD corresponds to three quarters of the circle

shown by the same letters. We transform the three-quarters circle

in the z plane into a half-circle in the W plane [Fig. 1 (c)] by the

transformation

and we transform the W plane into a lower half w plane [Fig. 1 (d)]

by the transformation

()W.; w++.
w

Then the half-plane capacity C is

K’ (k,)
c=—

K(k,)

where

~, = {1 – cos (~/3 – 2LY/3) ) {1 – COS(2cz/3) }

{1 + COS(?r/3 – 2a/3)) {1 + COS(2a/3) } “
(3)

Y

F
A iK’ H D

E

-K o =x
;K

I

B“ ‘---JC-iK’ F

Z plane

(s,)

v

Y

“+
iH

A D

E U(G

-1”0 /1 x

B. /c
-.’

-i F

z plane

(b)

v

&. +“
W plane

(c)

~ plane

(d)

Fig. 1. Mapping of L-shaped region on lower half-plane.


